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Semiempirical atomistic calculations of the conformations and energies of fold defects in polyethylene are 
reported. The calculations were carried out in different approximations: in a 'single' chain, in crystalline 
surroundings and in a crystal surface. The problem of finding an appropriate reference structure is discussed. 
The calculation of fold surfaces yields the surprising result that--in agreement with experimental results 
but in contrast to other atomistic calculations in the literature--the diagonal fold is more favoured than 
the b-axis fold. 
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I N T R O D U C T I O N  

Semiempirical atomistic calculations are a powerful tool 
for the investigation of ideal and defect conformations 
as well as the corresponding energies of chain molecules. 
The defect energies basically determine the properties of 
the material. In previous papers we presented results 
concerning our calculations of special point defects (e.g. 
kinks) in single polymer chains and in the polyethylene 
crystal 1,2. 

The semiempirical set of atomistic potentials we use 
has many times been proven to be valid for 
intramolecular as well as intermolecular interactions 3-5. 

In this paper we report results that we have taken from 
the calculation of fold defects in polyethylene (PE) using 
the same tested semiempirical potential set. In order to 
account for the parallelism of the straight-chain segments 
on both ends of the fold bend we used appropriate penalty 
functions as well as neighbouring chains fixed to lattice 
sites. 

M E T H O D  OF  CALCULATION 

Potential 
In our semiempirical atomistic calculations the total 

energy of molecules and crystals is composed of several 
terms, which describe the contributions of antra- and 
intermolecular interactions: 

E _ ~ i n t r a , i n t e r  _L 17 . .L f i"  
t o t  - -  ~ n b  / ~ v a l  i Z-,ro t 

E i n t r a , i n t e r  __ 
n b  - -  ~ [--Ajkr~k6 + Bjk exp(--Cjkrjk)+qjqklrjk] 

j < k  

Eval = E ½kt(lj - to j) 2 + E ½ko(Oj-- Ooj) 2 
J J 

Erot--- E ½Uo3( 1 - cos 3~bj) 
J 

where A,B,  C are potential constants (Buckingham 
potential), q are partial charges, kt, k o are force constants 
for bond length and bond angle deformation, Uo3 is the 
rotational force constant, rjk is the distance between 
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non-bonded atoms j and k, 0 is the bond angle and ~b is 
the dihedral angle (trans=O°). 

The first two terms account for the attractive and 
repulsive van der Waals interaction and the Coulomb 
interaction of not directly bonded atoms (non-bonded 
interaction). The third term accounts for the valence 
angle deformation in harmonic approximation and the 
last term for the contribution of the orbital interaction 
between atoms separated by a rotated bond (rotational 
potential). The values of the potential constants are given 
in table 1 in Aich and H~igele 6. In the case of PE no 
partial charges are introduced and bond lengths are fixed. 

The problem of  the reference structure 
The conformation (geometry) of a folded chain is 

obtained by minimizing the total conformational energy 
starting with appropriate values of the variables. This 
conformational energy must be referred to the energy of 
an appropriate reference structure so that the resulting 
defect energy does not depend on the length of the chain 
but is localized to the 'head' of the fold. While a single 
chain cannot act as a reference structure, this is achieved 
by a pair of chains. 

The situation is shown schematically in Figure 1, where 
the different energy contributions are shown separately. 
The interaction energy is labelled with a K for the pair 
of chains ( 'Kette),  and with an F for the pair of folds. 
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Figure 1 Interactions in a double fold and in a chain pair as reference 
structure (the energy contributions are explained in the text) 
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Atomistic calculations of folds: C. Schmieg et al. 

Upper-case letters indicate interchain interactions, 
lower-case letters intrachain interactions. The total 
energy is subdivided into parts originating from the chain 
ends (A, a) and the region of the fold head (B, b, C). This 
subdivision is somewhat arbitrary but nevertheless 
illustrates the problem of the reference structure. Note 
that there are two folds (a double fold) that correspond 
to a chain pair. The necessary condition for length 
independence: 

aF = AK 

holds if, in the double fold and in the chain pair, (1) there 
is an equal number of equivalent interactions, and (2) 
the conformation, the distance and the relative 
orientation of the parallel undisturbed chains are equal. 
A mathematically more rigorous treatment is given by 
Schmieg 7. 

The second requirement is achieved by the surrounding 
chains in a crystalline region. In a single folded chain, 
however, it is generally not fulfilled: the conformation of 
the fold is governed by the head of the fold, which often 
does not even allow parallelism of chains. But with the 
help of penalty functions it is possible to simulate the 
crystalline surrounding (see following section). 

A special problem is folds in amorphous regions. Even 
if the chain ends are approximately parallel, there will 
be a variety of chain distances and relative orientations 
of the chain ends. Which reference pair is the correct 
one? In this case we think the concept of defect energy 
to be not well defmed. But if there is an obvious reference 
pair, we can proceed as follows. 

As the energy contributions: 

AF,~ az~_O 

the defect energy per double fold is: 

2AEF = AE2F = 2 ( b F - -  bK) + 2 ( B F - -  BK) + (CF-- C~) 

In this equation the magnitude of the head-head 
interaction energies BF and CF are somewhat arbitrary 
depending on the distance of the two folds. There are 
two limiting cases: 

©q (1) AE2F , where the two folds are at equilibrium 
distance, and B v and C F have maximal (absolute) values 
(B~ q, C~q<0); and 

oo ©q cq ©q ¢q (2) AE2F = A E 2 F - - 2 B  F - C F > AE2v, w h e r e  t h e  two 
o o  oo folds are separated by a long distance, i.e. BF --CF = 0. 

This seems to be the case of the single folds that are 
discussed in the literature s'9. 

e q  The more realistic case is given by AE2F, because a 
fold defect is no typical single chain defect. In the bulk 
there is necessarily a second fold (or a pair of chain ends 
or a jog) that avoids big vacancies. In practice, we 
calculated ~o _ ~ AEF-~AE2F as the difference between the 
conformational energy of a single fold and half the 
conformational energy of a chain pair. The head-head 
interaction was calculated separately by minimizing the 
interaction energy of two enantiomorphic rigid folds with 
respect to their distance. From these contributions AE~ q 
is obtained• 

~gme2 

where the chain ends do not fit into lattice sites: the chain 
ends are not parallel and in most cases are twisted. Their 
distance differs from the experimental values. 

In order to get the correct lattice position of chain 
ends in the case of the calculation of a single fold, we 
simulated the influence of other surrounding chains by 
adding the following penalty functions to the conforma- 
tional energy (cf. Figure 2): 

Ux=kxo(Xo- X) 2 (1) 

tin = kpo(COS flo-N1 "N2) 2 (2) 

UT = kvo(C°S Yo- 7"1" T2) 2 (3) 

Equation (1) fixes the chain distance whereas the 
orientation (parallelism and twisting of the fold ends) is 
determined by equations (2) and (3) The values kxo, k o • # 
and kvo are weight factors of the penalty functions. The 
higher the factors chosen, the better the correct lattice 
positions are approximated• Too big values, however, 
give a badly scaled energy function, and the minimization 
procedure shows a slow convergence behaviour. After 
the minimization of the conformational energy plus the 
penalty functions the (normally small) amount of 'penalty 
energy' is subtracted. 

An alternative procedure would be the use of a 
minimization routine that allows one to include 
boundary conditions (method of Lagrangian multipliers; 
see e.g. Fletcher1°). 

In the case of the third penalty function (equation (3)) 
the calculation of the gradient (which is essential for the 
minimization procedure) is difficult. For this reason we 
preferred to use the first penalty function (equation (1)) 
for two different atoms at the same fold end. 

In all cases where the folded molecule is surrounded 
by neighbouring chains, no penalty function was used. 

RESULTS AND DISCUSSION 

In PE crystals there are two different types of tight folds: 

(1) the fold in [200] direction (b-axis fold), and 
(2) the fold in [11 (3] or [1 i0 ]  direction (diagonal 

fold). 

For chain folding in amorphous PE we discuss only one 
type of helix fold: the amorphous chains consist of a 
statistical mixture of trans and helix segments, so  that 
there is only an average chain distance and the relative 
orientations of the fold ends are not well defined. 

s Penalty function 
The simplest case of the calculation of folds is that of 

a fold in a single chain. But when minimizing the energy 
of a folded chain starting with appropriate geometrical 
data, the calculation yields a 'free fold' conformation Variables for penalty functions 
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b-axis fold (single chain) 
In order to calculate the b-axis fold in a single PE 

chain we started the energy minimization with the 
following dihedral angles in the head of the fold: 

. . .  0 o 120 ° 120 ° 0 o 120 ° 120 ° 0 ° . . .  

t g g t g g t 

(t=trans, g=gauche). During minimization 18 CH 2 
(methylene) groups were kept flexible (18 x 6 variables), 
and the chain ends (2 x 9 methylene groups) of the fold 
remained rigid whereas their relative orientation was 
fixed to lattice sites by means of the penalty functions. 
The resulting data are given in Table 1. The constraints 
lead to a bending of the fold head so that the sequence 

Table 1 b-Axis fold in polyethylene ((200) face) 

Fold with penalty 
'Free fold' function 

Dihedral angles (head) - 13.50 - 5.8 ° 
115.1 ° 115.2 ° 113.0 ° 121.1 ° 

119.4 ° 119.5 ° 116.5 ° 123.0 ° 

Head-head interaction -4 .2kJ  mol -  1 

Angle between chain 
ends (ideal 180 ° ) 

Rotation angle between 
chain ends 
(arceos/'1-T2 in 
Fioure 1; ideal 0 °) 
Defect energy (incl. 
head-head interaction) 

166.7 ° 179.5 ° 

12.5 ° 

not defined (cf. 
section on 
reference structure) 

0 . 5  ° 

11.3 kJ mol-  1 

Figure 4 

Atomistic calculations of folds: C. Schmieg et al. 

of dihedral angles becomes asymmetric (see Figure 3b). 
If the penalty functions are switched off, the 'free' folded 

chain has no longer parallel chain ends (Table 1, Figure 
3a). In this case it is not possible to calculate a defect 
energy as there is no corresponding reference structure. 

b-axis fold (crystalline surroundings) 
The method of penalty functions was tested by 

explicitly calculating a double fold with surrounding 
chains. This arrangement is shown schematically in 
Figure 4. Chains 1 to 8 are rigid and fixed to lattice sites 
corresponding to one of three temperatures. The 
corresponding lattice parameters are given in Table 2. 

Chains 9 and 10 form the double fold consisting of 
two opposite enantiomorphic folded chains. The energy 
of these chains was minimized with respect to intra- as 

b 

6 
/ 

7 
\ \s 

900) / 
8 ' 

/ 
2 

Arrangement of a double fold in the crystal (schematically) 

O ~  

Figure 3 (a) b-axis fold ('free'); (b) b-axis fold (with penalty function) 
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Table 2 Lattice parameters of orthorhombic PE at three temperatures 

Polyethylene 
lattice 

parameters 

Temperature (K) a (nm) b (nm) 

0 0.711 0.490 Atomistic calculations 14 
300 0.755 0.495 ~Experimentt 6 
400 0.765 0.499 

Table 3 Conformation, total defect energy and part of the defect 
energy of half a double fold in the PE lattice 

Lattice parameters 
corresponding to 

OK 300K 400K 

Angle between chain ends (ideal 180 ° ) 179.5 ° 177.5 ° 176.2 ° 

Rotation angle between chain ends 
(arccos TI" T2) (ideal 0 °) 0.5 ° 1.5 ° 2.0 ° 

Total defect energy of half a double 
fold (kJ mol- 1) 204.7 123.5 95.9 

Portions of the defect energy of half a 
double fold (kJ mol- 1) 

Double fold without surrounding 
chains* (incl. head-head interaction) 68.2 36.8 26.8 
Head-head interaction - 7.1 - 7.5 - 7.5 
Interaction with the surrounding 
chains 136.5 86.7 69.1 
Energy due to formation of a 
vacancy (estimated) 41.0 39.8 38.5 

* The portions of these energies are given in Table 4 

Table 4 Portions of defect energies of half a double fold (without the 
contribution of the surrounding chains) 

Lattice parameters 
Portion of defect energy corresponding to Single chain 
of half a double fold with penalty 
(kJ mol- 1) 0 K 300 K 400 K functions 

Uva I 33.1 18.4 14.7 6.9 
Urot 10.5 6.3 5.0 2.7 
Ust=r 31.7 19.6 14.6 5.9 
Uh©ad_head - -  7.1 -- 7.5 -- 7.5 - 4.2 

la t t ice  is a s t r o n g e r  c o n s t r a i n t  t h a n  o u r  p e n a l t y  func t ions .  
M o r e o v e r ,  a d o u b l e  fo ld  d o e s  n o t  fit i n t o  the  la t t ice  as 
eas i ly  as o n e  m i g h t  t h i n k :  a d u m b b e l l - l i k e  v a c a n c y  is 
g e n e r a t e d  tha t  c o n t a i n s  a lo t  o f  e n e r g y  (Table 3). I t  c an  
be  e s t i m a t e d  wi th  the  he lp  o f  the  c o h e s i o n  e n e r g y  Ucoh 
of  t he  P E  crys ta l .  I n  o r d e r  to  f o r m  the  v a c a n c y  a b o u t  

2 

Figure 5 Arrangement of a double fold in the crystal (1001] view, 0 K) 

wel l  as i n t e r m o l e c u l a r  va r i ab l e s  (18 f lexible  a n d  2 x 8 r ig id  
m e t h y l e n e  g r o u p s  pe r  chain) .  T h e  r e su l t i ng  d i h e d r a l  
angles  in the  h e a d s  o f  the  fo lds  a re :  

5.2 ° - 6 . 6  ° _ 1 6 . 2  ° - 1 0 . 8  ° 130.9 ° 95.8 ° 

1.2 ° 122.5 ° 128.2 ° 14.3 ° 2.7 ° 5.8 ° 

a n d  

- 5 . 4  ° 6.3 ° _ 1 6 . 7  ° 11.0 ° - 1 3 0 . 5  ° - 9 5 . 4  ° 

- 1 . 5  ° - 1 2 2 . 5  ° - 1 2 8 . 5  ° - 1 4 . 1  ° - 3 . 0  ° - 5 . 8  ° 

T h e  c o n f o r m a t i o n s  p r o v e  to  be  e n a n t i o m o r p h i c  (wi th in  
0.5 ° ) a n d  s h o w  c o n s i d e r a b l e  d e v i a t i o n s  f r o m  the  s ingle 
c h a i n  fo ld  d a t a  (Table 1). T h e  o t h e r  resul t s  a re  g iven  in 
Tables 3 a n d  4 a n d  Fioures 5, 6 a n d  7 (for 0 K). 

T h e  defect  ene rg ies  a r e  su rp r i s ing ly  h igh  c o m p a r e d  
wi th  tha t  o f  the  s ingle  cha in  (Table 1) a n d  d e p e n d  
sens i t ive ly  o n  the  la t t i ce  d i s tances .  I t  fo l lows  t h a t  the  Figure 6 Arrangement of a double fold in the crystal (El 0 O] view, 0 K) 
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F i g u r e  7 Arrangement  of a double fold in the crystal (1010] view, 0 K) 

Atomistic calculations of folds: C. Schmieg et al. 

Table 6 Diagonal  fold (type 2) in PE (see Figure 8b) 

Type 2 ((1 1 0) face) 

Dihedral angles (head) 87.4 ° 108.2 ° 
-111 .1  ° - 6 . 5  ° 

- 113 .8  ° 113.2 ° 

Angle between chain ends (ideal 180 ° ) 179.3 ° 

Rotat ion angle between chain ends 
(arccos T 1 • T2 in Figure 1) (ideal 90 °) 

Defect energy (including head -head  
interaction) 

Head -head  interaction 

88.0 ° 

29.7 kJ m o l -  1 

- 3 . 3  kJ mol - 1 

T a b l e  7 Diagonal  fold (type 2) in PE (see Figure 8c) 

Type 2 ((1 1 0) face) 

Dihedral angles (head) 86.1 ° 114.1 ° 
- 1 1 9 . 2  ° 10.3 ° 

- 116.6 ° 109.8 ° 

Angle between chain ends (ideal 180 ° ) 179.2 ° 

Rotation angle between chain ends 
(arccos T 1 • T2 in Figure 1) (ideal 90 °) 

Defect energy (including head-head  
interaction) 

Head -head  interaction 

90.02 ° 

30.1 kJ m o l -  1 

- 3 . 3  kJ mol - 1 

T a b l e  5 Diagonal  fold (type 1)  in PE (see Fioure 8a) 

Type 1 ( ( l i 0 )  face) 

Dihedral angles (head) 

Angle between chain ends (ideal 180 ° ) 

Rotation angle between chain ends 
(arccos T1./ '2 in Figure 1) (ideal 90 °) 

Defect energy (including head -head  
interaction) 

Head -head  interaction 

76.9 ° 106.6 ° 
--118.6 ° --8.6 ° 

--117.3 ° 100.5 ° 

179.4 ° 

94.3 ° 

39.3 kJ m o l -  1 

- 3 . 3  kJ mol - 1 

six methylene groups are to be removed from their 
neighbours, which takes about (1 +~)Uooh- 

Table 4 shows the rather high portions of the energy 
of valence angle deformation and steric interaction 
compared with the single chain calculation. This is mainly 
due to distortions in the fold heads, which tend to tilt 
out of the plane of the fold ends. The energies decrease 
rapidly with increasing lattice parameters. 

Diagonal fold (single chain) 
There are two types of diagonal folds in PE due to the 

crystal symmetry: type 1 in the [1 1 0] direction and type 
2 in the [1 1 0] direction. Their chain ends differ by a 
shift of c/2 (or an equivalent rotation of 180°). 

The calculations were performed in the same way as 
for the b-axis fold. During minimization 20 methylene 
groups were kept flexible (20 x 6 variables), and the rigid 
chain ends consisted of 2 x 9 methylene groups. The 
results are summarized in Tables 5, 6 and 7 and are shown 
in Figures 8a, 8b and 8c. 

a b c 

> 

F i g u r e  8 (a) Diagonal  fold (type 1); (b) diagonal fold (type 2); 
(c) diagonal fold (type 2) 
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Atomistic calculations of folds: C. Schmieg et al. 

F i g u r e  9 (a) Block of b-axis folds ([001] view); (b) block of diagonal folds ([001] view) 

There are two conformations of type 2, which differ in 
their dihedral angles but have approximately the same 
defect energies. As in the case of the b-axis fold the 'free' 
fold is found to be a minimum energy conformation but 
has no parallel chain ends. Therefore no defect energy is 
reported. 

Fold surfaces 
It is well known that in PE single crystals grown from 

solution the chains are tightly folded mainly in the I-1 10] 
direction ~ ~,~2. Considering the results of the single chain 
calculations reported above, one should expect that the 
b-axis folds in PE single crystals are more probable than 
the diagonal folds because the b-axis fold has lower defect 
energy than the diagonal fold. The subsequent 
calculations showed that it was necessary to consider a 
block of folds (fold lamellae) in order to solve this 
contradiction. 

For  this purpose we arranged 18 folded chains--with 
conformations as obtained by the energy minimization 
of the double fold defect--in a block with a plane surface 
of folds perpendicular to the chain axes. Only one end 
of each fold was fixed to a crystal site. During the 
minimization of the intra- and intermolecular energy the 
block was treated as an 'ideal crystal' with 20 flexible 
methylene groups per chain. The cohesion energy per 
chain (consisting of 40 methylene groups) included the 
interaction of the central chain with the other 17 chains 
arranged in two shells. The results are shown in Figures 
9a and 9b. We obtained the cohesion energies: 

- 164.7 kJ mol -  1 

- 144.6 kJ mol -  

for a block consisting of diagonal 
folds 

for a block consisting of b-axis 
folds 
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Table 8 Comparison of defect energies with other atomistic 
calculations in the literature 

Defect energy (kJ mol-i) 

Authors b-axis f o l d  Diagonal fold 

McMahon et al. s 51.5 61.1 
Petraccone et al. 9 9.6 16.7 
This work 11.3 29.7-39.3 
This work (without head-head 
interaction) 15.5 33.0-42.6 

This result shows tha t - - in  agreement with the 
experimental da ta - -an  arrangement of diagonal folds is 
energetically more favoured than an arrangement of 
b-axis folds. It follows that single chain calculations do 
not suffice in this case. 

It is also possible to calculate defect energies. In this 
case, however, it would be necessary to compare two 
interacting blocks with a block of 36 ideal chains! Further 
calculations should better consider the more realistic case 
of fold planes with non-perpendicular chain axes. 

Folds in the tgtg-  conformation o f  polyethylene 

So far for all reference structures the all-trans 
conformation of the PE chains was assumed. In the case 
of the melt, however, this is no longer realistic. In the 
meander model of the PE melt, for example, a chain 
conformation with a high density of kinks (gtg-)  is 
postulated la. We therefore took chain pairs with a tg tg-  
conformation as idealized reference structures. These 
pairs occur in a quasi-hexagonal crystal structure of PE 
calculated by Schmieg ~4. 

In order to approximate the amorphous surroundings 
only weak boundary conditions were applied. This means 
that only the parallelism of the chain ends was required. 
The flexible part of the chain contained 22 methylene 
groups and the chain ends eight methylene groups each. 
The calculations yielded eight folds with distances in the 
range of 0.44-0.50 nm and defect energies (including the 
negative head-head interaction energy) in the range 
4 . 8 - 1 7 k J m o l  -~. These energies are lower than the 
defect energies in the all-trans conformation because 
the reference conformation already contains gauche 
conformations. 

Atomistic calculations of folds: C. Schmieg et al. 

Comparison with other authors 

There are a few atomistic calculations of PE folds in 
the literature. In Table 8 the results are compared with 
our work. The data of McMahon et al. 8 are considerably 
higher than our data. This may be due to the neglect of 
valence angle deformation and to the substitution of a 
rotational potential term by too 'hard'  non-bonded 
interactions. Petraccone et al. 9 use potential functions 
similar to ours. Their potential constants are taken from 
Abe, Jernigan and Flory 1 s. These constants are fitted to 
data of small n-alkanes under the assumption of constant 
valence angles. As the potential set of Petraccone 9 
includes a valence angle term there arises an inconsistency 
that probably leads to too 'weak' potentials. This explains 
the fact that the data given by Petraccone 9 are lower 
than ours and stresses the necessity of consistent and well 
proven potentials. 

A C K N O W L E D G E M E N T S  

The financial support of the Deutsche Forschungs- 
gemeinschaft (DFG) and of the Fonds der Chemischen 
Industrie is gratefully acknowledged. For  stimulating 
discussions we thank Dr R. Aich, Dr J. Schmieg, 
Professor Dr W. Pechhold and Professor Dr W. Wilke. 

REFERENCES 

1 Scherr, H., H~gele, P. C. and Grossmann, H. P. Colloid. Polym. 
Sci. 1974, 252, 871 

2 Beck, L.andH~gele, P.C. Colloid.Polym. Sci. 1976,254,228 
3 Wobser, G. and H~igele, P. C. Bet. Bunsenges. Phys. Chem. 

1970, 74, 896 
4 Grossmann, H. P. and Frank, W. Polymer 1977, 18, 341 
5 Bautz, G., Leute, U., Dollhopf, W. and H~gele, P. C. Colloid. 

Polym. Sci. 1981, 259, 714 
6 Aich, R. and H~gele, P. C. Proo. Polym. Sci. 1985, 71, 86 
7 Schmieg, C. Thesis, Ulm, 1986 
8 McMahon, P. E., McCullough, R. L. and Schlegel, A. A. J. 

Appl. Phys. 1967, 38, 4123 
9 Petraccone, V., Allegra, G. and Corradini, P. J. Polym. Sci. (C) 

1972, 38, 419 
10 Fletcher, R. 'Practical Methods of Optimization', Vol. 2, 

'Constrained Optimization', Wiley, New York, 1981 
11 Keller, A. Phil. Mag. 1957, 2, 1171 
12 Khoury, F. and Bolz, L. H. 38th Annu. Proc. Electron Microsc. 

Soc., San Francisco, California, 1980 
13 Pechhold, W. Colloid. Polym. Sci. 1980, 258, 269 
14 Schmieg, J. Thesis, Ulm, 1984 
15 Abe, A., Jernigan, R. L. and Flory, P. J. J. Am. Chem. Soc. 

1966, 88, 631 
16 Davis, G. T., Eby, R. K. and Coulson, F. P. J. Appl. Phys. 

1970, 41, 4316 

POLYMER, 1990, Vol 31, April 637 


